

Questions

ExpertTalk SOUND

https://www.menti.com/

Code: 1134 5026

Heat pumps acoustics: When is quiet quiet enough?

The Bosch Home Comfort Group Experts:

Alexander Merzkirch

Group Leader Noise, Vibration & Harshness

Jürgen Herbst

Acoustic Expert

Agenda

- Challenges from Industry Perspective
- Legislation in Europe
- Sound Prediction Tools and Online Sound Comparisons
- Acoustic Development of Heat Pumps
- Source Characterization & Selection of Components
- Sound Visualization & Optimization
- Psychoacoustics
- Q&A

Trends that effect heat pump business

Connectivity – HP as system component

- energy management: maximize usage of self-produced energy
- system landscape: develop components, accessories, apps and portals to integrate HP in extended systems
- Easy installation (<u>plug & play</u>) and integration in systems

Increase maximum flow temperature

- HPs work best with surface heating due to higher efficiency on lower flow temperatures
- increasing the maximum flow temperature will strengthen HPs position in retrofit use-cases where mainly radiators are used
- keep efficiency and COP strong while providing higher temperature output

Reduce in-/outdoor noise emissions

- sound of HP outdoor units perceived as potential conflict issue with neighbors
- EU directive and local legislation limits maximum noise level and requires information on energy label
- Innovation driver: development of noise prevention measures, noise insulation and adjustment of fan design

ExpertTalk SOUND Legislation in Europe

Sound pressure level limit (night)

Measuring location for defining the maximum permissible sound pressures

- Country specific, sometimes region-specific requirements. Limit values in Austria partly not achievable with reasonable effort (Vienna, Salzburg)
- Very heterogeneous legislation in Europe
- Countries with individual regional legislation usually change legislation faster compared to national or European standards
- DACH & DK: lowest limit values for noise emissions (D: TA Lärm)
- Different requirements in Germany depending on the classification in the development plan: e.g. purely or general residential area, mixed area, ...
- ErP value is measured at 35% of maximum power not representative

Comparison of Sound Power & Sound Pressure

Similarities between heating power and sound power in terms of distance

- Sound power is measured in Watts small energies result in high sound power levels: L_{W,0} = 10−12W = 0dB, 1W = 120dB, regardless of distance
- Sound pressure is measured in Pascal, reference sound pressure: $L_{P,0} = 20 \mu Pa = 2 \cdot 10^{-5} Pa = 0 dB$, static air pressure: 1013hPa = 101 325 Pa
- → Sound power describes the sound source, sound pressure is meaningless without location and source reference

TA Lärm: Impact of National Noise Protection Regulations

Noise Limit Values:

Sound pressure levels L_P measured 0.5m in front of an open window of a living room or bedroom

Development Goals:

Translating sound limit of e.g. $L_p = 35 dB(A)$ into a development goal of $L_w < 50 dB(A)$ (sound power)

Guidance for Professionals:

Builders, architects, installers and end customers prefer distance limits to the neighbor's window: 3m distance to protected windows requires $L_W = 49.5 dB(A)$ and covers ~90% of all installations 2m distance can be reached with $L_W = 46 dB(A)$ and covers ~98% of all installation cases.

TA Lärm (German Regulation) Challenges:

- Sound generated by already installed heat pumps need to be considered or else a 6dB lower sound power limit to be achieved
- Tonality penalty to be added, but not a reliable process defined to assess tonality (no correlation between subjective evaluation and DIN45681 found)

TA Lärm goes beyond what is necessary:

- Heat pumps with L_W < 50dB(A) are virtually inaudible at a 2m distance.
- Sound power levels $L_W < 50$ dB(A) are sufficient to meet the need for quiet.

Sound Simulation & Calculation Tools

Sound & Distance Calculator (e.g. BWP Schallrechner)

https://www.waermepumpe.de/schallrechner/

Sound Simulation

https://www.boschhomecomfort.com/de/de/wohngebaeude/ wissen/heizungsratgeber/waermepumpe/ waermepumpe-lautstaerke/

Virtual Reality (3D simulation of HPs)

Reduction of Sound Power

Noise reduction

- 14 19dB sound power reduction over last 6 years
- "Best in class" 4dB/1dB quieter than the best competitor (Bosch AW5800 & Buderus WLW176i 3,5kW/5,5kW variant)
- Further sound reductions
 - require high development effort + costs
 - are not required, unless required by law

Why?

- No known noise complaints with Bosch AW7400i or Buderus WLW196i.2-4 and 2-6 (49 / 51dB(A) in night mode)
- Psychoacoustics play a greater role in perception than the sound power value

02

ExpertTalk SOUND

Engineering

Development steps for noise reduction

Selection of quietest components

Compressor & Fan

- Optimization of air flow: Finger ingress grid, fan motor mount, shroud
- **Diffusor:** Reduction of sound radiation to the front, invisible fan

Compressor Jacket (recycled absorber material)

"box in the box" concept for the ref-circuit components (3-layer barrier with recycled absorber material)

Design covers

Transfer path optimization

Housings: Solid & stamped base plate, reinforced frame, design covers including vibration damping...

Compressor Decoupling: Two stage vibration isolation

Vibration Damping: added to copper pipes and metal parts to reduce noise and extended lifespan.

Cable Routing: Optimized layout.

03

ExpertTalk SOUND

Source Characterization Compressor

Compressor Selection: Sound Power Tests & Tonality

- **Compressor Components Test**
- Acoustically relevant selection criteria
 - >20 operating points
 - Sound power (absolute value)
 - Sound power (frequency spectrum)
 - Vibrations (absolute values)
 - Vibrations (frequency spectrum)
 - Tonalities
 - Cost, performance, size...

Overview - Cause-Effect Relationships / Transfer Paths

Transfer Path Optimization

Simulation based Optimization

- ▶ Structure/Housing (base plate, frame, design panels, reduction of sound radiation and resonances)
- ▶ Refrigeration circuit (pipe routing, decoupling strategy, component placement, encapsulation & sealing measures)
- ▶ **Direct airborne sound** (fan: shroud, diffusor, protective grid/fins; compressor: encapsulation & sound barriers)

04

ExpertTalk SOUND

Simulation

Validation of FEM Simulations of the HP Baseplate

Base plate of the heat pump – matching measurement and simulation

FEA Modal Analysis (ANSYS)

Good match of frequency and vibration shape → simulation model validation!

Vibration Modes #1..3 + #7..9 | Rigid Body & Bending Modes

Base Plate and Compressor Base Plate – Design and Optimization

Goal:

Shift Rigid Body Mode frequency below compressor excitation

Goal:

increase stiffness to move bending modes like this to high frequencies

Optimization of decoupling based on simulations

05

ExpertTalk SOUND

Sound Visualization

Airborne Sound "Leak Detection" using Sound Visualization

Task: Detection of "sound leaks" & evaluation of measures
 Result: Measures developed and implemented

- "Sound leak" detection is an efficient tool to identify weak spots
- ~5dB airborne noise reduction achieved by sealing "sound leaks"

Comparison of the oscillating shapes of the refrigerant circuit

- Resonances visualized
- Critical frequencies & vibration modes identified
- Countermeasures derived:
 - Receiver geometry & fixation (height, diameter, etc..)
 - Torsional stiffness of the plate heat exchanger bracket

Lower vibration amplitude for dominating resonances achieved

06

ExpertTalk SOUND

Psychoacoustic

ExpertTalk SOUND Motivation

Pleasant Heat pump sounds recorded at a distance of 1 m sorted by annoyance

- Evaluation of the annoyance of 30 heat pump noises by 105 participants of listening study
- 23 The annoyance of a product can vary greatly from its sound level

Sound Quality / Pleasantness

Can a 'sound quality' or annoyance model be based on measurable quantities?

Psychoacoustic Metrics – Relevant Parameters

Relevant Psychacoustic Metrics: Loudness, Tonality, Roughness, and Sharpness

Final Model Checked by 13 Test Sounds

Pleasantness model for heat pumps tested and validated

Analysis of Operating Conditions of CS7400AW - 4kW A7W35

Sound radiation at the back of the appliance is more annoying than at the front

Analysis of Operating Conditions of CS7400AW - 4kW A7W35

Optimization of operating points possible (optimal fan/compressor speeds)

ExpertTalk SOUND Summary / Key Messages

- Four Major Challenges for the heat pump industry
- Acoustics Development is significantly influenced by the TA Lärm
- Acoustic Tools available for installers and end customers
- Acoustic Development of Heat Pumps:
 - Great progress has been made in the past 5 years: 10 15dB sound reduction
 - Meaningful lower limit reached: Sound power at night <50dB(A)
 - Psychoacoustics considered during the development of heat pumps!
- Advances in Psychoacoustics: Annoyance model with good correlation (>90%)
- Modern Heat Pumps are already a useful solution for many old buildings.

Goal achieved: Heat pumps can be very quiet and sound pleasant

ExpertTalk SOUND Now it's time for your questions!

https://www.menti.com/

Code: 1134 5026

